
Application Note

Filter Design Using Integrator Blocks

Much literature and software has been published on the design and the implementation of standard filter
responses. When a nonstandard filter response is required, it is often left to the circuit designer to produce a
solution using his or her own "standard" set of filter networks. However, there is an alternative to this
approach, and it is precise and easy to apply, and it utilizes integrator blocks and some simple
mathematical manipulation to produce filter responses of any order. The system uses simple op−amp
integrator blocks, an example of which is shown in Figure 1, and can equally be applied to both
continuous−time and switching−filter (e.g., switched−capacitor filter) designs.

Figure 1. Op−amp−based (linear) integrator circuit block and symbolic representation

The transfer functions of the integrator in Figure 1 and its symbolic representation are shown in the
expression in Figure 2. The response (output) of this circuit to the input voltage is a gain diminishing with
frequency at a rate of 6dB per octave with unity gain occurring at a frequency in hertz of 1/2CR.

Figure 2. Transfer function of the integrator circuit block in Figure 1

Application of the Technique

The design process starts with the required filter transfer function. The equation in Figure 3, which
represents a 2nd−order lowpass−filter response, will be used for illustration purposes, although the
technique can be employed for any filter type and is easily extended to higher−order systems.
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Figure 3. Transfer function of a 2nd−order filter with lowpass response

A sequence of mathematical steps is then applied to the transfer function to obtain an expression of the
form:

Note that all frequency−dependent terms (occurrences of S) in the resulting expression must appear in the
denominator terms. This is because the final circuit will be composed of integrators, i.e., functions of 1/S.

Three basic mathematical steps are required. The expression obtained at each stage is given below in the
equations of Steps 1 through 3.

Step 1. Cross−multiply to obtain

Step 2. Divide by the highest power of S to obtain

Step 3. Rearrange to obtain an expression for VOUT:

The equation produced in Step 3 is now the defining equation for a network of integrator blocks that will
perform the required filtering function.

The remaining two design steps are somewhat intuitive, but the rules are simple. First, an integrator
network drawing is produced. This uses a number of integrators and summing nodes to produce a network
described by the defining equation. To produce this network, start by considering the form of the defining
equation of Step 3. This expresses the output voltage (VOUT) in terms of functions of VOUT and VIN,where
each function is a product of one or more integrator terms.

Considering these terms, from left to right, the first term is a function of VIN and two integrator stages
(1/S2). The signal VIN must therefore pass through two integrator blocks before emerging at VOUT. The
first step in producing the diagram is then to draw VIN feeding two integrator blocks in series, with the
output of the second integrator connected to VOUT. The second term is also a function of two integrator
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stages but this time is fed from the VOUT signal. Furthermore, the coefficient of 1/S2 for both of these first
two terms is the same, i.e.,  0

2, so it is reasonable to have the source voltages for both of the first two
terms sharing a common path to the output. A summing junction is therefore inserted before the first
integrator stage and fed by connections to both VIN and VOUT. The third term of the equation is a function
of VOUT and a single integrator stage. To reproduce this in diagrammatic form, VOUT must also be fed to
the input of the second integrator block. This is done by inserting a second summing junction, this time
before the second integrator block, with inputs taken from the first integrator block and from VOUT.

To complete the network, the correct sign, inverting or noninverting, must be allocated to each
summing−junction input. The transfer function of the integrator shown in Figure 1 is of the form −1/ST, so
the integrator blocks will have a signal inversion built in. Signs are allocated to the summing junctions
working from the output back toward the input. The third term in the equation of Step 3 shows that the
feedback path from VOUT through the second summing junction and the second integrator and back to
VOUT should be inverting. Because the integrator already contains an inversion, the input to the second
summing junction from VOUT should be noninverting. By similar analysis, it can be seen that, as the first
term of the defining equation is positive, the path from VIN to VOUT should be noninverting. Because both
integrators invert the signal, the result is a noninverting path if the inputs to the first and second summing
junctions, from VIN and the first integrator block, respectively, are each noninverting. Note that this would
also apply if both inputs were inverting, but, as we shall see in the final design stage, the natural form of
the simple integrator circuit is that of a noninverting summing junction followed by an inverting integrator.
The integrator diagram is completed by allocation of a sign to the final summing−junction input, that from
VOUT to the first summing junction. This is given by the second term in the defining equation, which is
negative. Because the path through both integrators is noninverting, the required inversion must be placed
at the input of the signal to the first summing from VOUT. The resulting network for the defining equation
of Step 3 is that shown in Figure 4.

Figure 4. Integrator network representing the defining equation of Step 3

The integrator time constants T1 and T2 can now be assigned. From the integrator network, derivation and
analysis of the third term of the defining equation:

Similarly, from the first and second terms of the defining equation:

Filter Design Using Integrator Blocks

3



Values for 0 and q are then chosen and the time constants T1 and T2 calculated as follows:

The final step is to translate the integrator network of Figure 4 into an operational
amplifier/resistor/capacitor circuit. A standard, inverting, op−amp integrator block, comprising an op amp,
a feedback capacitor, and an input resistor, is equivalent to a single (noninverting) summing node followed
by an (inverting) integrator. Multiple input summing nodes are then accommodated by the addition of more
input resistors to the op−amp integrator block.

The circuit in Figure 5 shows the resulting active filter circuit, constructed from op−amp integrator blocks
built around the MAX4322. The values given for R1, R2, C1, and C2 produce values for c of 14.96µS and
7.05µS, respectively. The gain response of the filter is shown in the plot of Figure 4.

Note the trick with the feedback to IC1. Strict reproduction of the network in Figure 2 would have required
an inverter to be placed in the feedback to the first summing node. Applying feedback directly from VOUT

to the noninverting input of IC1 generates a signal at the output of IC1 of (VOUT + VOUT/ST1), which
provides the necessary integrating output plus a duplicate of the signal applied from VOUT to the second
summing node. Removing the feedback path to the second summing node restores the correct transfer
function.

Figure 5. Circuit realization of the integrator network in Figure 2
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Figure 6. Gain response of the filter in Figure 5

The above example can be implemented using a simple, dual−op−amp IC and a handful of passive
components. Where higher−order systems are being considered, the overall design task can be simplified
considerably by the use of multi−stage filter ICs. Two examples of this type of component are the
MAX274 and the MAX275. These provide, respectively, 4th−order and 8th−order continuous−time
filtering functions based on a series of integrator blocks. The filter time constants for these devices are
defined by external resistor values only, as the feedback capacitor for each integrator stage is provided
on−chip. If the designer wishes a higher degree of programmability of the filter design, then a
switched−capacitor−filter approach may well be suitable. There are a number of switched−capacitor
building−block ICs available that can be adjusted by the use of a programmable clock or resistors. Some
parts are also available with microprocessor−interface capability. The MAX260 to MAX268 family of
switched−capacitor−filter building−block parts provide a full range of control methods for anyone looking
for programmable filtering functions.

The design process described is powerful in its applicability to virtually any active filtering requirement
and can be applied to functions of any order. In addition, the resulting implementation of simple integrator
blocks eases the selection and the tolerancing of components. Some active filter implementations
exacerbate the effects of basic component tolerances, whereas the integrator approach produces the same
basic tolerance susceptibility as that furnished by a passive LCR filter circuit. Further, the effects of
op−amp−bandwidth variation are relatively simple to calculate, because the (desired) operating unity−gain
bandwidth of each integrator block is simply given by 1/T rad/s = 1/2RC Hz.
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